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SUMMARY
 
Listing and discussing some thermionic-energy-conversion (TEC) trends
 

C, results in a brief text 
-
backed by many more pages of figures, tables,
references, and appendixes. 
 Projections of TEC performande, overall powerplant efficiency, and cost of electricity (COE) lead again to observa
tions on the importance of "high-temperature, high-power-density TEC"
(NASA TM X-73844) and the need to "optimize . . TEC" for the system (NASATM X-73892) rather than assuming that low-current densities are desirable.Partial optimization of steam-plant topping with >20 W/cm2 TEC yields overall 
efficiencies near those of the most-efficacious advanced systems and
COE's between the best and those for conventional steam plants. Of course,
complete optimization of TEC-topped plants should produce even 
better efficiency and COE values. 
 Major R&T requirements for such application payoffs are rapid TEC-performance improvements coupled with detailed determinations of low-cost effective materials, fabrication techniques, and maintenance procedures. 
TEC trends are in the right direction.
 

PAST TEC TRENDS
 

Thermionic energy conversion (TEC) is 
a young technology. But it has
evolved rapidly (refs. 1 to 5). 
 The impetus for this growth derived primarily from space nuclear power (SNP) activities prior to 1973. 
 In contrast to that in-core TEC program, however, present research and techiology (R&T) emphasizes out-of-core TEC with heat-pipe-cooled reactors (refs.
1 to 19). In addition TEC potentialities for terrestrial 
power generation attract increasing attention (refs. 
20 to 30). Proposals for such
applications comprise simple all-TEC systems (refs. 28 and2§), TEC tooping of central-station powerplants (refs. 20 to 27 and 30), and even TEC
bridging of the Carnot-efficiency gap between magnetohydrodynamic (MHD)
topping and steam-driven generators (refs. 24 and 29). 
 Although mentioning MHD and TEC with steam invariably evokes the "compounding advanced
technologies" warning, existence of Department of Energy (DOE) programs
for MHD and TEC practically compels prudent evaluation of their combined

effects.
 

Ultimate TEC desirabil.ity in various applications depends strongly
on 
the calendar of performance improvements. So predictions of this time
table appear increasingly in recent TEC publications (refs. 1,7,and30). And
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because oFtheir tmporfance thepr6senpaper comments on'tnese published
 
and projected TEC performance trends. This commentary includes graphs and
 
an appendix relating TEC performance parameters, plots of predidted and
 
actual TEC trends, a figure relating projected cost of electricity to over
all efficiency for TEC topping, and a discussion of the implications of
 
these -relationships.
 

TEC PERFORMANCE
 

Perhaps the most important criterion for TEC performance is efficiency
 
(Appendix: ref. 4). But output power density and voltage as well as inter
electrode and total-internal losses also receive considerable emphasis in
 
TEC R&T discussions. So for the reader's convenience these and other var
iables as well as their definitions appear in the appendix: -"Some TEC
 
Background and Theory" (excer'pted from ref. 18). Because the appendix pre
sentation aims at space applications, the present paper also inclttdes re
sults based on the same assumptions, but related more to TEC use in topping.
 
cycles for terrestrial applications (figs. 4 to 11).
 

This background and performance information may make the discussion of
 
TEC trends more meaningful.
 

SOME TEC-PERFORMANCE PROJECTIONS
 

Representative indications of TEC trends appear in figures 12 (ref. 1),
 
13 (ref. 7), and 14 (ref. 30) as well as Table 3 (ref. 7). In these pre
sentations "barrier index" and "performance index" correspond to ."total in
ternal losses" (indicated in the appendix) and produce identical effects on
 
appropriate electron-potential diagrams for thermionic converters. Figures
 
4 to 7 as well as 13 and 14, Table 3, and the appendix all relate such
 
internal-loss values to TEC efficiencies.
 

Figure 12. depicts the history of TEC performance with total internal
 
losses of 2.8 eV at the beginning of 1968; 2.4, 1970; 2.0, 1972; and 1.9,
 
1975. The arbitrary definitions of "first-," "second-," and "third-genera
tion" TEC (2.0-, 1.5-, and l.O-eV total internal losses) also appear in
 
figure 12.
 

Figure 13 and Table 3 look into the TEC-perfornance futuro fi§cftly

and temporally. nterestingly, as reference 4 (Table 3) foretold ffi 1761 
attainment of 1.7-eV total internal losses occurred prior to the end of 
fiscal year 1978: Scientists at the Sukhumi Institute of Physics and Tech
nology reported this unpublished accomplishment to a NASA, ERDA TEC-Tour 
group in the USSR _during July of 1977 (ref. 29). A recent publication,of 
those results (ref..31shows that the lanthanum-hexaboride collector 
(background: refs. 32 and 33) used in the Sukhumi TEC experiments produced
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a 1.2-eV cesiated work function. That value would allow a common 0.5-eV
 
interelectrode drop and still yield 1.7-eV total internal losses.
 

With such a 1.2-eV collector the near-zero fierelectrode losses pro
phesized to be available in FY 1981 by reference 6 of the appendix would
 
mean 1.2-eV total internal losses in that year.
 

In contrast reference 30 (fig. 14) predicts 1.2-eV total internal
 
losses in FY 1983 with third-generation (1.0 eV) TEC ascending in FY 1985:
 

Figure 15 contains some of the previously mentioned trends and projec
tions. In addition the solid straight lines in figure 15 represent simple

correlations of published total internal losses for thermionic converters
 
producing practical power densities. These line segments reveal that prog
ress was rapid when large improvements were still possible (>2-eV internal
 
losses). But as performance increased the rate of gains diminished (2.0
to 1.7-eV internal losses). This is a common technological relationship.
 
However, these TEC performance improvements occurred while a complete pro
gram termination and several -major transitions dwarfed usual R&T adversi
ties (refs. 10 and 12).
 

SOME IMPLICATIONS OF TEC TRENDS
 

Energy-conversion-technology.projections are subjects of important DOE 2
 
sponsored studies (refs. 34 and 35). Results of these analyses relating
 
cost of electricity (COE) to overall powerplant efficiency imply long-range
 
influences on the economy and energy conservation as well as on the envi
ronment. Figure 16 indicates this relationship (ref. 35). The "{78 TEC, 
STEAM" points are adaptations of TEC topping data (refs. 76 £o 27 and 30) 
to estimate "30-year levelized cost in mid 1975 dollars" with "fuel cost 
assumed constant in fixed dollars" ($1/10 6 Btu's). The upper" '78 TEC, 
STEAM" point covers a range of practically unoptimized ("UNOPT.") tesults 
while the lower point represents a partially optimized ("PART. OPT.") TEC 
topping system (ref. 25). This partial optimization takes advantage of 
greater efficiencies and far fewer converter modules possible for TEC (with
negligible interelectrode losses) operating at 20 to 40 A/cm2 rather than 
than near 5 A/cm2 (refs. 18 and 19; appendix page 13; figs. 4 to 11). Phil
osophies as well as figures 3 and 4 of reference 25 are very similar to 
those of reference 18 (appendix). -

Figure 16 anticipates near-maximum performances for all advanced con
version systems. For TEC this means "third generation," which the preced
ing charts depict quite fully: Low internal losses (-l eV) andhigh emitter 
temperatures (to -1600 K) are necessary for TEC efficiencies (ranging to 
,35%) required to achieve the "'78'TEC, STEAM" status. This requirement 
contrasts somewhat with that for megawatt space TEC applications, where high 
tmpgrtures juke moderate efficiencies (-15%) acceptable (refs. 1 to 19).
Demonstrated TEC performance is at the threshold in space - half way home
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on earth. And TEC gains are continuing (fig. 15).
 

With expected R&T accomplishments, "'78 TEC, STEAM" projections point
 
to high overall efficiencies (-45% to 47% "UNOPT." and >47% "PART. OPT,"
 
including desulfurization losses). Such performance means great energy
conservation and environmental improvements. Furthermore, with the appar
ent hot-corrosion and slag resistance as well as the thermal-expansion

match of silicon-carbide-clad converters & efs. 36 to 40)f, TEC isone of the
 
few good prospects for direct use in coal-combustion products. And coal
 
utilization means balance-of-payment reversals as well as national.energy
 
independence.
 

The previously mentioned aspects should intensify interest in "TEC 
bridging of the Carnot-efficiency gap between MHD topping and steam-driven 
generators." For coal-fired, MHD, TEC, STEAM combinations, calculated over
all efficiencies rise above 55 percent - off the chart on figure 16 (refs. 
f4 and -2-9. 

Intopping COE (refs. 20 to 27, except 25) as in space applications
 
(refs. 1 to 19, except refs. 18 and 19), TEC has suffered because of contin
ual apologies for its high-current-density capability: Most designs arbi
trarily assign values near 5 A/cm 2. Now references 18, 19, and 25 advocate
 
the efficiency increases and converter;number reductions possible with high
power-density TEC having negligible internal losses. Changing from about
 
5 A/cm2 to 20 to 40 A/cm2 is a prime factor in diminishing TEC-topping COE's
 
from -46 mills/kW-hr ("UNOPT.") to -37 mills/kW.hr ("PART. OPT.") on fig
ure 16. And as reference 25 concludes, "we expect that further significant

improvements can be made by optimizing the overall system design." Such re
sults should place TEC, STEAM among the best systems on figure 16.
 

Incidentally, figure 16 (ref. 35) levelizes "costs inmid 1975 dollars"
 
using $1/106 Btu fuel and a 2.00 EPRI levelizing factor. So the present
 
paper converts reference 25 findings to figure 16 ground rules to obtain a
 
compatible comparison. Higher assumed fuel costs, say $3/105 Btu accen
tuate the COE difference between STEAM and TEC, STEAM: For $1110 6 Btu the
 
TEC, STM OE is -37 mills/kW-hr compared with STM at -42 mills/kW-hr,

5 mills/kW-hr or 13.5% greater. And for $3/106 Btu the TEC, STM COE is
 
-65 mills/kWhr compared with STM at -83 mills/kWNhr, 18 mills/kW-hr or
 
27.7% greater.
 

In any event optimized TEC topping promises high efficiencies and low
 
COE's as well as good prospects for service in high-temperature coal-com
bustion products. Such potentialities have very important implications,
 
mentioned previously. Analyses of TEC-specific applications, like on-site
 
coal-fired power cogeneration for electrochemical industries, could.in
crease TEC potentials even more. The major R&T accomplishments needed to
 
achieve these application payoffs are rapid TEC-performance improvements

coupled with detailed determinations of low-cost effective materials, fab
rication techniques, and maintenance procedures. tEC trends are in the
 
right direction.
 

http:could.in
http:mills/kW.hr
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APPENDIX
 

(Excerpted from NASA TM-73844)
 

SOME lEC BACKGROUND AND THEORY
 

At present the major space TEC application appears to be nuclear
 

electric propulsion (NEP) (refs. 1 to 3). But'analyses that ptoperly
 
recognize the high-temperature, high-power-density advantages of TEC
 
may prove it valuable for solar, radioisotope, and topping utiliza

tion in space also. Unfortunately, though, some design-feasibility
 
studies assume without optimization that low or intermediate temper
atures and small power densities-are required for space TEC (refs.
 
1 to 3).
 

The present report offers some theoretic results that emphasize'
 
the need to consider greater power densities and higher temperaturesi
 
within reasonable limits for TEC in space: Converter outputs and
 

efficiencies for 1400-to-2000K emitters with 725-to-1000K collectors
 
make this point.
 

George Hatsopoulos and Elias Gyftopoulos, long-term international-


TEC experts, as well as B. Ya. Moyzhes and G. Ye. Pikus, two other
 
the thermionic-converworld-renowned TEC contributors, elaborate on 


ter heat engine in.their reference works (refs. 4 and 5): For reversible 

devices th9 heat supplied isothermall at absolute temperature T h 

is JdQh = I Th dSh = Th I dSh, where JdSh is the entropy decrease 
of the source. Simjlarly the heat rejected isothermally at absolute 

entemperature Tc is JdQc = STc dSc = Tc JdSc, where SdSc is the 
tropy ihcrease of the sink. Then according to Carnot the ideal heat

engine efficiency is 

lim SdQh- dQc -Tc TcrdSc 1lTh - T c 

£dsc JdSh f SdQh Th T dS 1 J Th C 

From this basic principle comes the expdctation that in general
 

raising the emitter temperature or lowering the collector temperature
 

tends to increase TEC efficiency. Local exceptions' to this corollary
 

may occur for optimizations of specific converters. But with freedom
 

of selection for electrode types and materials, enhancement modes,
 

and operating conditions this temperature generalization for TEC ef-"
 

ficiency prevails.
 

Occasionally, disseminated information apparently contends with
 

the idea that TEC efficiencies generally rise with increasing emitter
 

temperatures (ref. 3). At such times reaffirmation of the validity
 

of Nicolas Carnot's thermodynamic'legacy seems appropriate. But
 

merely pointing to the preceding equation is perhaps somewhat sim

plistic. So the present report relies on TEC output and efficiency
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calculations based on the assumptions used to produce pages IV-15
 
to IV-18 of ref. 3: "Back emission should be limited to 10%" for
 
1400, 1650, and 1800K emitters (2000K included also) with 725, 925,
 
and IO00K collectors. However the present analysis deletes the ref. 3
 
assumRtions that "converter power density should be set at 5 to 6
 
We/cm4" and that the highest emitter temperature should be used'only
 
with the highest collector temperature. Also, assumed interelectrode
 
losses hear zero by FY 81 (ref. 6) alf6w estimates of collector
 
work functions.
 

The appropriate converter outputs are the current density,
 

a0 =JSE - JR1)
 

the electrode voltage,
 

VO = OE - C -VD - VA OE - VB - VA' 2)
 

the voltage at optimum-lead terminals,
 

VOL =V 0 - VL, 3)
 

the electrode power density,
 

=
PO 0 Vol 4)
 

and the effective power density with optimum leads attached to the
 
converter,
 

=
POL Jo VOL 5)
 

Here 0E and C are emitter and collector work functions, VD is the 
interelectrode voltage drop, V8 = + Vr is the barrier index or 
total internal loss, VA is the equivalen? auxiliary input voltage 
(not used in the present calculations), and VL is the voltage loss
 
required for optimum leads.
 

The current-density components correspond to emitter saturation,
 

=
JES A (i-RE) TE2 exp (-PE/kTE), 6)
 

which has a collector-saturation counterpart,
 

JCS = A (1-Rc) TC2 exp (-Oc/kTc), 7)
 

and to the reverse flow JR, which includes reflections, backscattering,
 
back emission, and other effects that diminish the output current
 
density. Inequations 6) and 7) A and k are Richardson and Boltzmann
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constants, TE and T are emitter and collector temperatures, and RE
 
and Rc are emitter nd collector reflection coefficients.
 

i An important theoretic detail relates to a common inconsistency

in the treatment of back emission (refs. 7 and 8): In generalized

TEC terminology back emission subtracts from the emitter current
 
in obtaining the net output current. This usual definition of back

emission requires it to be only that part of the collector emission
 
that reaches the emitter and thereby diminishes the output current
 
according to a net-flow b'alance at the converter 'boundaries. Thus
 
back emission is not the saturated collector emission given by equation
7), regardless of RC modification, because the emission barrier is 
incorrect: This observation derives from the fact that, in the gen
erally cited TEC power-producing mode, the emitter electron barrier 
(motive maximum) is a few tenths of a volt (the interelectrode voltage
drop) above its collector counterpart. So during steady-state op
eration the preponderance of collector saturated emission cannot
 
clear the emitter sheath, even in the absence of other deflecting
 
encounters. Therefore most of the collector saturated emission must
 
return to its source nullifying to a large extent its.effect on the
 
diminution of the net output current.
 

Unless the interelectrode loss is much closer to zero than to
 
its currently common value of about a half volt, only a small 
frac
tion of the collector emission, the true back emission JBE' will
 
reach the emitter:
 

=
JBE A(1-RBE) TC2 exp (-VB/kTc) 8)
 

In this equation the effective back-emission reflection coefficient
 
R 
comprises RC and similar coefficients for all interelectrode
 
mghanisms that return collector-emitted electrons to their source-
except those for noncollisional repulsion by the emitter sheath.
 
Thus, using equation 8) without RBF produces a conservative estimate
 
of the converter output current. Such an approximation seems reasonable
 
for low cesium concentrations, reduced enhanced-mode pressures, and
 
small interelectrode gaps. Of course, with zero interelectrode losses
 
assumed (ref. 6 for FY 81) 
as well as negligible interelectrode-reflec
 
tion effects, equations 7) and 8) become identical.
 

A simplified, yet reasonable estimate of TEC efficiency with
 
optimum-lead losses NO embodies the previously discussed inputs

(refs. 4 and 9):
 

(JES-JBE) {0ECD-VA-2 [ 2.45xi0-8 EC(TE2-Tc 2)/(2-UEC)] } 9) 
=1OL JES(OE+2kTE)-JBE(CE+2kTc)+5.7xlO -12 LO.O5+7.5x10-5(TE-1000)] (TE
4-T4)
 

Here the last term of the denominator approximates nonelectronic thermal
 
transport while the factor following the first 2 in the numerator
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represents ti-optimum-lead loss V . Deleting 2V from e-quation9). .. 
transforms that expression into on6 for the TEC etectrode efficiency 

nEC used here to compute the optimum-lead loss. Of course, the electrode
 
efficiency is the true converter evaluatioh analogous to other power
generator performance ratings. But because of relatively high TEC
 
current densities and low voltages theoptimum-lead efficiency seems
 
more pragmatic.
 

Theoretic TEC outputs and efficiencies for converters with 10
percent back emission and optimum leads appear parametrically in
 
figures 1, 2, and 3 for.725, 925, and IO00K collectors. Each figure
 
comprises plots of efficiency, voltage, and power density as func
tions of current density for 1400, 1650, 1800, and 2000K emitters.
 

Without exception, for a given collector temperature, all perfor
mance curves for higher emitter temperatures rise above those for
 
the lower emitter temperatures. This observation would have grati
fied Nicolas Carnot.
 

The effjciency curves reach values very lose to their maxima
 
above 5 A/cm? for the 1400K emitters; 20 A/cm? for 1650K emitters;
 
30 A/cm2, 1800K; and 40 A/cm2, 2000K.
 

The two preceding paragraphs imply that studies of any TEC system
 
should evaluate parametrically the effects of converters with emitters
 
hotter than 1650K and current densities greater than 5 A/cm (refs.
 
1 to 3). Table 1 for 925K collectors (refs. 2 and 3) further emphasizes
 
this observation. The underlined Table I entries indicate output and
 
efficiency improvements (for converters with optimum leads) resulting
 
from raising the emitter temperature from 1650K to 1800K at 5 A/cm
 

.
and at 30 A/cm?


These underlined values also reveal the significan output and
 
efficiency gains for EC operation at 1800K and 30 A/cm as compared
 
with 1650K and 5 A/cm (refs. 1 to 3): The 28.5% increase in optimum
lead efficiency means lighter radiators and either more output power
 
Or smaller nuclear reactors and lighter shield-dependent weights for
 
NEP; The 10.8% higher optimum-lead voltage requires less power con
ditioning capability and results in lower transmission-line losses
 
for a given quantity of output power. The 560% gain in effective
 
output power density allows many fewer converters and associa'te-d-current
collecting bus bars for a given output-power level. And of course
 
the higher emitter temperature (coupled with greater ef-f-iciyenc-
enables the use of substantially fewer and/or smaller emitter heat
 
pipes. This reduction in turn should produce significant rl- ,P'.
 
in shielding-related as well as reactor weights. The higher rmi tLr
 
temperature can also make possible considerably increased collector
 
temperatures if parametric studies indicate the need for lower
 
radiator weights (the T4 influence).
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The previously enumerated a vantages of 1800K, 30 A/cm 2 TEC
operation over the 1650K, 5 A/cmC case have obviously strong effects
 on NEP specific-weight reductions. 
So the importance of true overall
system optimization with parametric TEC inputs should not be under
estimated.
 

Omitted tabulations similar-to those of Table I are also available
for collector temperatures of 725K and IO00K. 
And as figures 1 to 3
attest, the order of performance remains unchanged: 
 For a given
collector temperature the highest emitter temperature produces the
best TEC performance; the lowest emitter'temperature gives the poorest

TEC performance.
 

If the only emitter, collector combinations considered were
1400 with 725K, 1650K with 925K, and 1800K with 1O00K all 
at 5.5
W/cm as in reference 3, the TEC-output relationships would appear
quite different from those in figures I to 3. But a parametric TECoptimization study should evaluate each 
 ollector temperature with
each emitter temperature. When existing converter-component capa-,
bilities preclude such pairings, appropriately directed technology

advancements may render them possible in the near future.
 

Reference 3 states that "the higher temperature converters are
limited to higher work function materialc, and thus eventually extrapolate to lower operating efficiencies.'. 
But the 1800K emitter work
functions in the table are obtainable with cesiated tungsten, for
example, without invoking oxygenation. Such work functions are even
 
more readily accessible with rhenium and still more easily attainable
 
with iridium.
 

As for the collector work functions in the preceding table, they
are well within reach of cesiated, oxygenated tungsten: This collector
has a work-function minimum of 1.21 eV according to recent measurements (ref. 9). Unoxygenated minimum cesiated work functions run
1.45 eV for rhenium (ref. 4) and probably 1.4 or lower for 111 iridium
 
(refs. 7, 8, and 10 to 
14). And tungsten, rhenium, and iridium are all
 
satisfactory for 1800K-emitter service.
 

Incidentally the calculations for figures I to 3 give results
rather centrally located among those from other TEC efficiency models
 

G. D. Fitzpatrick of Rasor Associates, Inc.). 


for 10% back emission and zero arc drop (Private communication with
 
The variation occurs
because of differences in loss approximations. A comparison of TEC


efficiencies appearsin Table 2.
 

Table 2 lists extremes of conditions primarily to compare TECefficiency models over wide ranges. 
 But these values also strongly
imply the desirability of high-temperature, high-power-density thermionic energy conversion-for space.
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TABLE-r: tFFECTSOF EHITIER TEMPERATURE DENSITYANDCURRENT 
ONTHERJIONIC CONVERSIONPERFORNIMCE 

Emitter Temp., K 1400 1650 1300 2000 14v 1650 160 2000 1- J 1650 1300 2000 1400 1650 .1800 2000 

Collector Temp., K 925 925 925 925 925 925 925 925 925 925 925 925 925 925 925 925 

Current Density, A/cm2 5 5 5 5 10 10 10 10 20 20 20 20 30 30 30 30 

Output Voltage, V 

VO 0.59 1.02 1.23 1.63 0.57 0.98 1.23 1.56 0.54 0.93 1.17 1.50 0.52 0.91 1.14 1:45 

VOL 0.53 0.93 1.18 1.52 0.50 0.88 1.12 1.44 0.47 0.84 1.07 1.37 0.45 0.81 1.03 1.33 

POWer Density, W/cm 
2 

PO 3.0 5.1 6.4 8.1 5.7 9.8 12.3 15.6 10.7 18.7 23.5 29.9 15.6 27.2 34.3 43.8 

POL 2.6 4.7 5 7.6 5.0 8.8 11.2 14.4 9.4 16.8 21.3 27.4 13.6 24.4 31.0 40.0 

Efficiency, 

no 22.4 2a.4 29.4 28.6 23.3 31.3 33.3 34.9 23.7 32.9 36.5 39.2 23.5 33.5 37.4 40.9 

!GL 17.4 2. 24A 24.9 17.7 25.4 28.0 29.6 17.7 26.3 29.7 32.7 17.5 26.4 30.2 33.8 

Enitter Work 
Function, eV 2.12 2.55 2.80 3.15 2.04 2.45 2.70 3.03 1.95 2.35 2.59 2.91 1.90 2.29 2.53 2.84 

Collector Work 
Function. eV 1.53 1.53 1.53 1.53 1.47 1.47 1.47 1.47 1.42 1.42 1.42 1.42 1.38 1.38 1.38 1.38 

TABLE 2: TEC EFFICIENCIES
 

10 A/cm 2
 60 A/cm 2 


Emitter Collector Temp = 725K Collector Temp. = 1000K
 
Temp, K Collector Work Function Z 1.0 eV Collector Work Function Z 1.6 eV
 

2000 - 40% R. Breitwieser - 19%
 
1400 - 32% 1 " - 12%
 
2000 - 41% Rasor Associates, Inc. - 24%
 
1400 - 29.5% " - 14%
 
2000 - 50% Thermo Electron Corp. - 28%
 
1400 - 35.5% " - 13%
 
2000 - 43.4% J. Morris - 27%
 
1400 - 30.3% "t - 13%
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Figure 1. - Optimum-lead TEC efficiency (7700,
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rent (Jo) for four emitter temperatures (TE)
at acollector temperature of 725 Kwith 
10 percent back emission. 
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Figure 2.  Optimum-lead TEC efficiency (7OL0,
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TABLE 3 THERMIONIC PERFORMANCE MILESTONES AND 
POTENTIAL APPLICATIONS 

larrier 

End of 
Fiscal 
Year 

- Index I 
VB 

(ev) 
Efficiency, %2 

1400 K 1700 K Potential Application 

1973 2 1 43 124 In core space reactor (8 mit spacing)31 
1975 2.0 72 14.1 Oxygen additive converter (40 mil spacing) 
1976 1.9 9.0 16.5 Laboratory converter (tungsten oxide collector) 
1977 1.8 11.5 186 Radiosotope thernomoe generator 

Solar thermal electrical power plant 
1978 1.7 14.0 21.3 Out ofcore space reactor (40 mil spacing) 

Hydrocarbon auxiliary power unit 
1979 1.6 16.8 23.7 Thermionic topped fossil fuel power plant 
1980 1.5 200 26-4 Improved performance for all applications 

I Established at 6 amps/tm 2 In laboratory converter and at optimum spacing. 

2. Calculated at optimum current density
 

3 Reduced to engineering practke in U S and U S S R.
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